Bayesian Approach to Photo Time-Stamp Recognition
Time-stamps and URLs overlaid artificially on images add useful meta information which can be used for automatic indexing of images and videos. In this paper, we propose a method based on an attention-based model of visual saliency to extract overlaid text and time-stamps that are rendered on images...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-stamps and URLs overlaid artificially on images add useful meta information which can be used for automatic indexing of images and videos. In this paper, we propose a method based on an attention-based model of visual saliency to extract overlaid text and time-stamps that are rendered on images. Our model of visual saliency is based on a Bayesian framework and works very well for the task of time-stamp detection and segmentation as is evident by overall object recall of 80% and precision of 70%. Our method produces a clean text segmented binarized image, which can be used for recognition directly by an OCR system. Furthermore, our technique is robust against variation of font styles and color of time-stamp and overlaid text. |
---|---|
ISSN: | 1520-5363 2379-2140 |
DOI: | 10.1109/ICDAR.2011.210 |