Real-time communication analysis for networks with two-stage arbitration

Current on-chip and macro networks use multi-stage arbitration schemes which independently assign different resources such as crossbar inputs and outputs to individual traffic streams. To use these networks in real-time systems, their worst-case behavior must be proved analytically in order to ensur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Diemer, Jonas, Rox, Jonas, Negrean, Mircea, Stein, Steffen, Ernst, Rolf
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current on-chip and macro networks use multi-stage arbitration schemes which independently assign different resources such as crossbar inputs and outputs to individual traffic streams. To use these networks in real-time systems, their worst-case behavior must be proved analytically in order to ensure the required timing guarantees. Current analysis approaches, however, do not capture the multi-stage arbitration accurately. In this paper, we propose an analysis that maps the multi-stage arbitration to a schedulability analysis of multiprocessors with shared resources. This allows the exploitation of knowledge about the worst-case behavior of the individual traffic streams, which is required to provide nonsymmetric guarantees. Using this scheduling analysis approach, a detailed analysis solution for a common multi-stage arbitration scheme (iSLIP) is presented. Finally, we evaluate the proposed approach experimentally and compare it to previous work.
DOI:10.1145/2038642.2038680