Design study of a three-phase brushless exciter for aircraft starter/generator
This paper presents a design study of a 3-phase AC main exciter (ME) for an aircraft starter-generator. A computationally efficient methodology for optimizing the design of the ME is presented. The optimisation is carried out using coupled two-dimensional (2D) magnetostatic finite element solver and...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a design study of a 3-phase AC main exciter (ME) for an aircraft starter-generator. A computationally efficient methodology for optimizing the design of the ME is presented. The optimisation is carried out using coupled two-dimensional (2D) magnetostatic finite element solver and particle swarm optimisation procedure (PSO). The ME design is then analysed using 3D FE to account for the end-winding effects, and the results are fed into a lumped-parameter circuit model of the ME. The circuit model allows for the operating modes of the ME being analysed in a computationally efficient manner also accounting for non-linearities. The theoretical findings are experimentally validated on a prototype generator. |
---|---|
ISSN: | 2329-3721 2329-3748 |
DOI: | 10.1109/ECCE.2011.6064313 |