Design and Implementation of Broadcast Algorithms for Extreme-Scale Systems
The scalability and performance of collective communication operations limit the scalability and performance of many scientific applications. This paper presents two new blocking and nonblocking Broadcast algorithms for communicators with arbitrary communication topology, and studies their performan...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The scalability and performance of collective communication operations limit the scalability and performance of many scientific applications. This paper presents two new blocking and nonblocking Broadcast algorithms for communicators with arbitrary communication topology, and studies their performance. These algorithms benefit from increased concurrency and a reduced memory footprint, making them suitable for use on large-scale systems. Measuring small, medium, and large data Broadcasts on a Cray-XT5, using 24,576 MPI processes, the Cheetah algorithms outperform the native MPI on that system by 51%, 69%, and 9%, respectively, at the same process count. These results demonstrate an algorithmic approach to the implementation of the important class of collective communications, which is high performing, scalable, and also uses resources in a scalable manner. |
---|---|
ISSN: | 1552-5244 2168-9253 |
DOI: | 10.1109/CLUSTER.2011.17 |