Electro-opto-thermal modeling of threshold current dependence on temperature

A self-consistent model of semiconductor quantum-well (QW) lasers is presented and deployed here for the study of threshold current dependence on temperature. The simulated dependencies of threshold current-density on temperature and cavity lengths agree well with experiments published by Evans et a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 1997-04, Vol.3 (2), p.640-648
Hauptverfasser: Ellis, D.S., Xu, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 2
container_start_page 640
container_title IEEE journal of selected topics in quantum electronics
container_volume 3
creator Ellis, D.S.
Xu, J.M.
description A self-consistent model of semiconductor quantum-well (QW) lasers is presented and deployed here for the study of threshold current dependence on temperature. The simulated dependencies of threshold current-density on temperature and cavity lengths agree well with experiments published by Evans et al. (1995). Aided with detailed knowledge so obtained of each contributor to the threshold current, attempts are made to gain insights into the well-known Pankove and other newly proposed empirical relations. The relative importance of the various mechanisms are evaluated, and self-heating is shown as an important factor determining the threshold current at high temperature.
doi_str_mv 10.1109/2944.605716
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_605716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>605716</ieee_id><sourcerecordid>10_1109_2944_605716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-50444e3661afa1c689b3dec30df889223991d5eec7f77d170ccd0d43ceecb9d33</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqUwsTF5Ry7n2I7jEVWlIEViAYktSu0LCUriyHYH_j2pUjHd071Pb_gIueew4RzMU2ak3OSgNM8vyIorVTCpZHY5Z9CaZTl8XZObGH8AoJAFrEi569Gm4JmfkmepxTDUPR28w74bv6lvaGoDxtb3jtpjCDgm6nDC0eFokfqRJhwmDHU6BrwlV03dR7w73zX5fNl9bF9Z-b5_2z6XzGYKElMgpUSR57xuam7zwhyEQyvANUVhskwYw51CtLrR2nEN1jpwUtj5dTBOiDV5XHZt8DEGbKopdEMdfisO1UlEdRJRLSJm-mGhO0T8J8_lH_NYWko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electro-opto-thermal modeling of threshold current dependence on temperature</title><source>IEEE Electronic Library (IEL)</source><creator>Ellis, D.S. ; Xu, J.M.</creator><creatorcontrib>Ellis, D.S. ; Xu, J.M.</creatorcontrib><description>A self-consistent model of semiconductor quantum-well (QW) lasers is presented and deployed here for the study of threshold current dependence on temperature. The simulated dependencies of threshold current-density on temperature and cavity lengths agree well with experiments published by Evans et al. (1995). Aided with detailed knowledge so obtained of each contributor to the threshold current, attempts are made to gain insights into the well-known Pankove and other newly proposed empirical relations. The relative importance of the various mechanisms are evaluated, and self-heating is shown as an important factor determining the threshold current at high temperature.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/2944.605716</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical lasers ; Indium phosphide ; Integrated circuit modeling ; Laser modes ; Quantum well lasers ; Semiconductor lasers ; Strain measurement ; Temperature dependence ; Temperature sensors ; Threshold current</subject><ispartof>IEEE journal of selected topics in quantum electronics, 1997-04, Vol.3 (2), p.640-648</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-50444e3661afa1c689b3dec30df889223991d5eec7f77d170ccd0d43ceecb9d33</citedby><cites>FETCH-LOGICAL-c250t-50444e3661afa1c689b3dec30df889223991d5eec7f77d170ccd0d43ceecb9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/605716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/605716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ellis, D.S.</creatorcontrib><creatorcontrib>Xu, J.M.</creatorcontrib><title>Electro-opto-thermal modeling of threshold current dependence on temperature</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>A self-consistent model of semiconductor quantum-well (QW) lasers is presented and deployed here for the study of threshold current dependence on temperature. The simulated dependencies of threshold current-density on temperature and cavity lengths agree well with experiments published by Evans et al. (1995). Aided with detailed knowledge so obtained of each contributor to the threshold current, attempts are made to gain insights into the well-known Pankove and other newly proposed empirical relations. The relative importance of the various mechanisms are evaluated, and self-heating is shown as an important factor determining the threshold current at high temperature.</description><subject>Chemical lasers</subject><subject>Indium phosphide</subject><subject>Integrated circuit modeling</subject><subject>Laser modes</subject><subject>Quantum well lasers</subject><subject>Semiconductor lasers</subject><subject>Strain measurement</subject><subject>Temperature dependence</subject><subject>Temperature sensors</subject><subject>Threshold current</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhS0EEqUwsTF5Ry7n2I7jEVWlIEViAYktSu0LCUriyHYH_j2pUjHd071Pb_gIueew4RzMU2ak3OSgNM8vyIorVTCpZHY5Z9CaZTl8XZObGH8AoJAFrEi569Gm4JmfkmepxTDUPR28w74bv6lvaGoDxtb3jtpjCDgm6nDC0eFokfqRJhwmDHU6BrwlV03dR7w73zX5fNl9bF9Z-b5_2z6XzGYKElMgpUSR57xuam7zwhyEQyvANUVhskwYw51CtLrR2nEN1jpwUtj5dTBOiDV5XHZt8DEGbKopdEMdfisO1UlEdRJRLSJm-mGhO0T8J8_lH_NYWko</recordid><startdate>199704</startdate><enddate>199704</enddate><creator>Ellis, D.S.</creator><creator>Xu, J.M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199704</creationdate><title>Electro-opto-thermal modeling of threshold current dependence on temperature</title><author>Ellis, D.S. ; Xu, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-50444e3661afa1c689b3dec30df889223991d5eec7f77d170ccd0d43ceecb9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Chemical lasers</topic><topic>Indium phosphide</topic><topic>Integrated circuit modeling</topic><topic>Laser modes</topic><topic>Quantum well lasers</topic><topic>Semiconductor lasers</topic><topic>Strain measurement</topic><topic>Temperature dependence</topic><topic>Temperature sensors</topic><topic>Threshold current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellis, D.S.</creatorcontrib><creatorcontrib>Xu, J.M.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ellis, D.S.</au><au>Xu, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-opto-thermal modeling of threshold current dependence on temperature</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>1997-04</date><risdate>1997</risdate><volume>3</volume><issue>2</issue><spage>640</spage><epage>648</epage><pages>640-648</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>A self-consistent model of semiconductor quantum-well (QW) lasers is presented and deployed here for the study of threshold current dependence on temperature. The simulated dependencies of threshold current-density on temperature and cavity lengths agree well with experiments published by Evans et al. (1995). Aided with detailed knowledge so obtained of each contributor to the threshold current, attempts are made to gain insights into the well-known Pankove and other newly proposed empirical relations. The relative importance of the various mechanisms are evaluated, and self-heating is shown as an important factor determining the threshold current at high temperature.</abstract><pub>IEEE</pub><doi>10.1109/2944.605716</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 1997-04, Vol.3 (2), p.640-648
issn 1077-260X
1558-4542
language eng
recordid cdi_ieee_primary_605716
source IEEE Electronic Library (IEL)
subjects Chemical lasers
Indium phosphide
Integrated circuit modeling
Laser modes
Quantum well lasers
Semiconductor lasers
Strain measurement
Temperature dependence
Temperature sensors
Threshold current
title Electro-opto-thermal modeling of threshold current dependence on temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-opto-thermal%20modeling%20of%20threshold%20current%20dependence%20on%20temperature&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Ellis,%20D.S.&rft.date=1997-04&rft.volume=3&rft.issue=2&rft.spage=640&rft.epage=648&rft.pages=640-648&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/2944.605716&rft_dat=%3Ccrossref_RIE%3E10_1109_2944_605716%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=605716&rfr_iscdi=true