Electro-opto-thermal modeling of threshold current dependence on temperature
A self-consistent model of semiconductor quantum-well (QW) lasers is presented and deployed here for the study of threshold current dependence on temperature. The simulated dependencies of threshold current-density on temperature and cavity lengths agree well with experiments published by Evans et a...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 1997-04, Vol.3 (2), p.640-648 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A self-consistent model of semiconductor quantum-well (QW) lasers is presented and deployed here for the study of threshold current dependence on temperature. The simulated dependencies of threshold current-density on temperature and cavity lengths agree well with experiments published by Evans et al. (1995). Aided with detailed knowledge so obtained of each contributor to the threshold current, attempts are made to gain insights into the well-known Pankove and other newly proposed empirical relations. The relative importance of the various mechanisms are evaluated, and self-heating is shown as an important factor determining the threshold current at high temperature. |
---|---|
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/2944.605716 |