Analysis of discrete pressure level systems for Wave Energy Converters
Within the research field of harvesting the energy of ocean waves, fluid power has been identified as a crucial technology in the Power Take-Off (PTO) design, due to the high torque densities required in Wave Energy Converters (WECs). The PTO is the technology converting the captured wave motion int...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Within the research field of harvesting the energy of ocean waves, fluid power has been identified as a crucial technology in the Power Take-Off (PTO) design, due to the high torque densities required in Wave Energy Converters (WECs). The PTO is the technology converting the captured wave motion into electricity. However, conventional fluid power systems are characterized by offering poor efficiencies, rendering current PTO designs inefficient. This paper investigates the feasibility of a fluid power system based on implementing the force control of hydraulic cylinders by switching between a few fixed system pressures. The proposed design is optimized at multiple levels, as evaluating the feasibility of a solution highly depends on finding the optimum trade-off between e.g. harvested wave energy and losses in the PTO system. |
---|---|
DOI: | 10.1109/FPM.2011.6045825 |