Standard representation and stability analysis of dynamic artificial neural networks: A unified approach

A framework and stability conditions are presented for the analysis of stability of three different classes of dynamic artificial neural networks: (1) neural state space models, (2) global input-output models, and (3) dynamic recurrent neural networks. The models are transformed into a standard nonl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, K. K. K., Patron, E. R., Braatz, R. D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A framework and stability conditions are presented for the analysis of stability of three different classes of dynamic artificial neural networks: (1) neural state space models, (2) global input-output models, and (3) dynamic recurrent neural networks. The models are transformed into a standard nonlinear operator form for which linear matrix inequality-based stability analysis is applied. Theory and numerical examples are used to draw connections and make comparisons to stability conditions reported in the literature for dynamic artificial neural networks.
ISSN:2165-3011
2165-302X
DOI:10.1109/CACSD.2011.6044536