Fast Bundle Algorithm for Multiple-Instance Learning

We present a bundle algorithm for multiple-instance classification and ranking. These frameworks yield improved models on many problems possessing special structure. Multiple-instance loss functions are typically nonsmooth and nonconvex, and current algorithms convert these to smooth nonconvex optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2012-06, Vol.34 (6), p.1068-1079
Hauptverfasser: Bergeron, C., Moore, G., Zaretzki, J., Breneman, C. M., Bennett, K. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a bundle algorithm for multiple-instance classification and ranking. These frameworks yield improved models on many problems possessing special structure. Multiple-instance loss functions are typically nonsmooth and nonconvex, and current algorithms convert these to smooth nonconvex optimization problems that are solved iteratively. Inspired by the latest linear-time subgradient-based methods for support vector machines, we optimize the objective directly using a nonconvex bundle method. Computational results show this method is linearly scalable, while not sacrificing generalization accuracy, permitting modeling on new and larger data sets in computational chemistry and other applications. This new implementation facilitates modeling with kernels.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2011.194