Design and modeling of a reversible 3-phase to 6-phase induction motor for improved survivability
In this investigation, a design has been developed for a 6-phase induction machine, which is based on an existing 3-phase design. This approach involves reconfiguration of an existing 3-phase induction machine into a 6-phase winding design using the same stator core lamination structure. This redesi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this investigation, a design has been developed for a 6-phase induction machine, which is based on an existing 3-phase design. This approach involves reconfiguration of an existing 3-phase induction machine into a 6-phase winding design using the same stator core lamination structure. This redesigned motor was simulated, using a time-stepping finite-element (TSFE) technique, under open-loop controller operation with different types of phase-loss scenarios such as loss of adjacent phases and the loss of nonadjacent phases. A comparative analysis of the motor performance, under these various phase-loss conditions of the 6-phase configuration versus the healthy 6-phase case, is presented. The analysis of the torque-ripple content with the help of current-space vector concepts was used. The results show that the ripple content in the torque is found to be a much lesser problem for the 6-phase configuration in comparison to the 3-phase configuration under phase-loss conditions. |
---|---|
ISSN: | 1932-5517 |
DOI: | 10.1109/PES.2011.6039812 |