Decomposing permutations via cost-constrained transpositions

We consider the problem of finding the minimum cost transposition decomposition of a permutation. In this framework, arbitrary non-negative costs are assigned to individual transpositions and the task at hand is to devise polynomial-time, constant-approximation decomposition algorithms. We describe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farnoud, F., Milenkovic, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of finding the minimum cost transposition decomposition of a permutation. In this framework, arbitrary non-negative costs are assigned to individual transpositions and the task at hand is to devise polynomial-time, constant-approximation decomposition algorithms. We describe a polynomial-time algorithm based on specialized search strategies that constructs the optimal decomposition of individual transpositions. The analysis of the optimality of decompositions of single transpositions uses graphical models and Menger's theorem. We also present a dynamic programing algorithms that finds the minimum cost, minimum length decomposition of a cycle and show that this decomposition represents a 4-approximation of the optimal solution. The results presented for individual cycles extend to general permutations.
ISSN:2157-8095
2157-8117
DOI:10.1109/ISIT.2011.6033925