On L1-distance error control codes
This paper gives some theory and design of efficient codes capable of controlling (i. e., correcting/detecting/correcting erasure) errors measured under the L 1 distance defined over m-ary words, 2 ≤ m ≤ +∞. We give the combinatorial characterizations of such codes, some general code designs and the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper gives some theory and design of efficient codes capable of controlling (i. e., correcting/detecting/correcting erasure) errors measured under the L 1 distance defined over m-ary words, 2 ≤ m ≤ +∞. We give the combinatorial characterizations of such codes, some general code designs and the efficient decoding algorithms. Then, we give a class of linear and systematic m-ary codes, m = sp with s∈IN and p a prime, which are capable of controlling d ≤ p-1 errors. If n and k∈IN are respectively the length and dimension of a BCH code over GF(p) with minimum Hamming distance d + 1 then the new codes have length n and k' = k + r log m s information digits. |
---|---|
ISSN: | 2157-8095 2157-8117 |
DOI: | 10.1109/ISIT.2011.6033693 |