On L1-distance error control codes

This paper gives some theory and design of efficient codes capable of controlling (i. e., correcting/detecting/correcting erasure) errors measured under the L 1 distance defined over m-ary words, 2 ≤ m ≤ +∞. We give the combinatorial characterizations of such codes, some general code designs and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tallini, L. G., Bose, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper gives some theory and design of efficient codes capable of controlling (i. e., correcting/detecting/correcting erasure) errors measured under the L 1 distance defined over m-ary words, 2 ≤ m ≤ +∞. We give the combinatorial characterizations of such codes, some general code designs and the efficient decoding algorithms. Then, we give a class of linear and systematic m-ary codes, m = sp with s∈IN and p a prime, which are capable of controlling d ≤ p-1 errors. If n and k∈IN are respectively the length and dimension of a BCH code over GF(p) with minimum Hamming distance d + 1 then the new codes have length n and k' = k + r log m s information digits.
ISSN:2157-8095
2157-8117
DOI:10.1109/ISIT.2011.6033693