Traffic sign classification using K-d trees and Random Forests
In this paper, we evaluate the performance of K-d trees and Random Forests for traffic sign classification using different size Histogram of Oriented Gradients (HOG) descriptors and Distance Transforms. We use the German Traffic Sign Benchmark data set [1] containing 43 classes and more than 50,000...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we evaluate the performance of K-d trees and Random Forests for traffic sign classification using different size Histogram of Oriented Gradients (HOG) descriptors and Distance Transforms. We use the German Traffic Sign Benchmark data set [1] containing 43 classes and more than 50,000 images. The K-d tree is fast to build and search in. We combine the tree classifiers with the HOG descriptors as well as the Distance Transforms and achieve classification rates of up to 97% and 81.8% respectively. |
---|---|
ISSN: | 2161-4393 2161-4407 |
DOI: | 10.1109/IJCNN.2011.6033494 |