On learning repeated combinatorial auctions

In this work, we discuss how an intelligent agent learns in combinatorial auctions. It is well-known that finding the optimal allocation to maximize revenue is NP-complete, because this is a typical form of Set Package Problem (SPP). We introduce a framework of reinforcement learning to combinatoria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arai, S., Miura, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we discuss how an intelligent agent learns in combinatorial auctions. It is well-known that finding the optimal allocation to maximize revenue is NP-complete, because this is a typical form of Set Package Problem (SPP). We introduce a framework of reinforcement learning to combinatorial auctions, and discuss how to obtain intelligence about bidding behavior. We show empirical convergence of knowledge within Q-learning framework. By this result, we target fully automated negotiation systems.
ISSN:1555-5798
2154-5952
DOI:10.1109/PACRIM.2011.6032900