Modeling of moving object trajectory by spatio-temporal learning for abnormal behavior detection
This paper proposes a trajectory analysis method by handling the spatio-temporal property of trajectory. Not using similarity measures of two trajectories, our model analyzes overall path of a trajectory. Learning of spatio property is presented as semantic regions (e.g. go straight, turn left, turn...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a trajectory analysis method by handling the spatio-temporal property of trajectory. Not using similarity measures of two trajectories, our model analyzes overall path of a trajectory. Learning of spatio property is presented as semantic regions (e.g. go straight, turn left, turn right) that are clustered effectively using topic model. The temporal order of observations on a trajectory is taken into account using HMM for detecting global anomaly. Results of experiments show that modeling of semantic region and detecting of unusual trajectories are successful even in complex scenes. |
---|---|
DOI: | 10.1109/AVSS.2011.6027305 |