Modeling of moving object trajectory by spatio-temporal learning for abnormal behavior detection

This paper proposes a trajectory analysis method by handling the spatio-temporal property of trajectory. Not using similarity measures of two trajectories, our model analyzes overall path of a trajectory. Learning of spatio property is presented as semantic regions (e.g. go straight, turn left, turn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hawook Jeong, Hyung Jin Chang, Jin Young Choi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a trajectory analysis method by handling the spatio-temporal property of trajectory. Not using similarity measures of two trajectories, our model analyzes overall path of a trajectory. Learning of spatio property is presented as semantic regions (e.g. go straight, turn left, turn right) that are clustered effectively using topic model. The temporal order of observations on a trajectory is taken into account using HMM for detecting global anomaly. Results of experiments show that modeling of semantic region and detecting of unusual trajectories are successful even in complex scenes.
DOI:10.1109/AVSS.2011.6027305