Learning to recognize faces from videos and weakly related information cues
Videos are often associated with additional information that could be valuable for interpretation of their content. This especially applies for the recognition of faces within video streams, where often cues such as transcripts and subtitles are available. However, this data is not completely reliab...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Videos are often associated with additional information that could be valuable for interpretation of their content. This especially applies for the recognition of faces within video streams, where often cues such as transcripts and subtitles are available. However, this data is not completely reliable and might be ambiguously labeled. To overcome these limitations, we take advantage of semi-supervised (SSL) and multiple instance learning (MIL) and propose a new semi-supervised multiple instance learning (SSMIL) algorithm. Thus, during training we can weaken the prerequisite of knowing the label for each instance and can integrate unlabeled data, given only probabilistic information in form of priors. The benefits of the approach are demonstrated for face recognition in videos on a publicly available benchmark dataset. In fact, we show exploring new information sources can considerably improve the classification results. |
---|---|
DOI: | 10.1109/AVSS.2011.6027287 |