Global bifurcation of limit cycles in an integrable non-Hamiltonian system under polynomial perturbations
Global bifurcation of limit cycles in a perturbed integrable non-Hamiltonian system is investigated using bifurcation method of limit cycles. The study reveals that, for the integrable non-Hamiltonian system under polynomial perturbations [equation (8) in the introduction], the upper bound for the n...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Global bifurcation of limit cycles in a perturbed integrable non-Hamiltonian system is investigated using bifurcation method of limit cycles. The study reveals that, for the integrable non-Hamiltonian system under polynomial perturbations [equation (8) in the introduction], the upper bound for the number of limit cycles is [(n+m-1/2)] + 1 when n ≥ m + 2; it is m + 1 when n = m, m + 1; and it is m when 1 ≤ n ≤ m - 1. The results presented here are helpful for further investigating the Hilbert's 16th problem. |
---|---|
ISSN: | 2157-9555 |
DOI: | 10.1109/ICNC.2011.6022497 |