A fuzzy logic approach to predict human body weight based on AR model

This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of 365 days. AR model predicts body weight of a day from these time-series data. We calculate an order of AR model for each person by Akaike...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tanii, Hideaki, Nakajima, Hiroshi, Tsuchiya, Naoki, Kuramoto, Kei, Kobashi, Syoji, Hata, Yutaka
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a body weight prediction method using auto regressive (AR) model and Fuzzy-AR model. First, we employ 6 persons body weight change data of 365 days. AR model predicts body weight of a day from these time-series data. We calculate an order of AR model for each person by Akaike's Information Criterion. In the experiment, we predicted body weight change of next day for those subjects. The AR model obtained 0.798 in correlation coefficient between predicted and truth values. Second, we propose a Fuzzy-AR model that predicts body weight of next p days from last p days, where p is the order of AR model. In this method, we propose a Fuzzy-AR model with the fuzzy membership function using last p days data. In the experiment, the Fuzzy-AR model obtained 0.558 in correlation coefficient on 2 subjects.
ISSN:1098-7584
DOI:10.1109/FUZZY.2011.6007361