The countability of induced R(L)-fuzzy topological spaces

In this paper, We prove that that the weight, character, density and Lindelof degree of (L X , δ) are equal with those of (R(L) X ,ω(δ)),and that (L X , δ) is a Lindelof space if and only if (R(L) X , ω(δ)) is a Lindelof space. We also comepare (L X , δ) and (R(L) X , ω(δ)) in respects of dense set....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhibin Liu, Minqiang Gu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, We prove that that the weight, character, density and Lindelof degree of (L X , δ) are equal with those of (R(L) X ,ω(δ)),and that (L X , δ) is a Lindelof space if and only if (R(L) X , ω(δ)) is a Lindelof space. We also comepare (L X , δ) and (R(L) X , ω(δ)) in respects of dense set.
DOI:10.1109/ICMT.2011.6002633