The countability of induced R(L)-fuzzy topological spaces
In this paper, We prove that that the weight, character, density and Lindelof degree of (L X , δ) are equal with those of (R(L) X ,ω(δ)),and that (L X , δ) is a Lindelof space if and only if (R(L) X , ω(δ)) is a Lindelof space. We also comepare (L X , δ) and (R(L) X , ω(δ)) in respects of dense set....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, We prove that that the weight, character, density and Lindelof degree of (L X , δ) are equal with those of (R(L) X ,ω(δ)),and that (L X , δ) is a Lindelof space if and only if (R(L) X , ω(δ)) is a Lindelof space. We also comepare (L X , δ) and (R(L) X , ω(δ)) in respects of dense set. |
---|---|
DOI: | 10.1109/ICMT.2011.6002633 |