Localizing parts of faces using a consensus of exemplars

We present a novel approach to localizing parts in images of human faces. The approach combines the output of local detectors with a non-parametric set of global models for the part locations based on over one thousand hand-labeled exemplar images. By assuming that the global models generate the par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Belhumeur, P. N., Jacobs, D. W., Kriegman, D. J., Kumar, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel approach to localizing parts in images of human faces. The approach combines the output of local detectors with a non-parametric set of global models for the part locations based on over one thousand hand-labeled exemplar images. By assuming that the global models generate the part locations as hidden variables, we derive a Bayesian objective function. This function is optimized using a consensus of models for these hidden variables. The resulting localizer handles a much wider range of expression, pose, lighting and occlusion than prior ones. We show excellent performance on a new dataset gathered from the internet and show that our localizer achieves state-of-the-art performance on the less challenging BioID dataset.
ISSN:1063-6919
DOI:10.1109/CVPR.2011.5995602