Ordinal hyperplanes ranker with cost sensitivities for age estimation

In this paper, we propose an ordinal hyperplane ranking algorithm called OHRank, which estimates human ages via facial images. The design of the algorithm is based on the relative order information among the age labels in a database. Each ordinal hyperplane separates all the facial images into two g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuang-Yu Chang, Chu-Song Chen, Yi-Ping Hung
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an ordinal hyperplane ranking algorithm called OHRank, which estimates human ages via facial images. The design of the algorithm is based on the relative order information among the age labels in a database. Each ordinal hyperplane separates all the facial images into two groups according to the relative order, and a cost-sensitive property is exploited to find better hyperplanes based on the classification costs. Human ages are inferred by aggregating a set of preferences from the ordinal hyperplanes with their cost sensitivities. Our experimental results demonstrate that the proposed approach outperforms conventional multiclass-based and regression-based approaches as well as recently developed ranking-based age estimation approaches.
ISSN:1063-6919
DOI:10.1109/CVPR.2011.5995437