Evaluation of a probabilistic multihypothesis tracking algorithm in cluttered environments

This research examines the probabilistic multihypothesis tracker (PMHT), a batch-mode, empirical, Bayesian data association and tracking algorithm. Like a traditional multihypothesis tracker (MHT), track estimation is deferred until more conclusive data is gathered. However, unlike a traditional alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hutchins, R.G., Dunham, D.T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research examines the probabilistic multihypothesis tracker (PMHT), a batch-mode, empirical, Bayesian data association and tracking algorithm. Like a traditional multihypothesis tracker (MHT), track estimation is deferred until more conclusive data is gathered. However, unlike a traditional algorithm, PMHT does not attempt to enumerate all possible combinations of feasible data association links, but uses a probabilistic structure derived using expectation-maximization. This study focuses on two issues: the behavior of the PMHT algorithm in clutter and algorithm initialization in clutter. We also compare the performance between this algorithm and other algorithms, including a nearest neighbor tracker, a probabilistic data association filter (PDAF), and a traditional measurement-oriented MHT algorithm.
ISSN:1058-6393
2576-2303
DOI:10.1109/ACSSC.1996.599147