Scaling and Self-repair of Linux Based Services Using a Novel Distributed Computing Model Exploiting Parallelism

This paper describes a prototype implementing a high degree of fault tolerance, reliability and resilience in distributed software systems. The prototype incorporates fault, configuration, accounting, performance and security (FCAPS) management using a signaling network overlay and allows the dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morana, G., Mikkilineni, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a prototype implementing a high degree of fault tolerance, reliability and resilience in distributed software systems. The prototype incorporates fault, configuration, accounting, performance and security (FCAPS) management using a signaling network overlay and allows the dynamic control of a set of nodes called Distributed Intelligent Managed Elements (DIMEs) in a network. Each DIME is a computing entity (implemented in Linux and in the future will be ported to Windows) endowed with self-management and signaling capabilities to collaborate with other DIMEs in a network. The prototype incorporates a new computing model proposed by Mikkilineni in 2010, with signaling network overlay over the computing network and allows parallelism in resource monitoring, analysis and reconfiguration. A workflow is implemented as a set of tasks, arranged or organized in a directed acyclic graph (DAG) and executed by a managed network of DIMEs. Distributed DIME networks provide a network computing model to create distributed computing clouds and execute distributed managed workflows with high degree of agility, availability, reliability, performance and security.
ISSN:1524-4547
2641-8169
DOI:10.1109/WETICE.2011.18