Zhang Neural Network Versus Gradient Neural Network for Solving Time-Varying Linear Inequalities
By following Zhang design method, a new type of recurrent neural network [i.e., Zhang neural network (ZNN)] is presented, investigated, and analyzed for online solution of time-varying linear inequalities. Theoretical analysis is given on convergence properties of the proposed ZNN model. For compara...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2011-10, Vol.22 (10), p.1676-1684 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By following Zhang design method, a new type of recurrent neural network [i.e., Zhang neural network (ZNN)] is presented, investigated, and analyzed for online solution of time-varying linear inequalities. Theoretical analysis is given on convergence properties of the proposed ZNN model. For comparative purposes, the conventional gradient neural network is developed and exploited for solving online time-varying linear inequalities as well. Computer simulation results further verify and demonstrate the efficacy, novelty, and superiority of such a ZNN model and its method for solving time-varying linear inequalities. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2011.2163318 |