3-D scene analysis via sequenced predictions over points and regions
We address the problem of understanding scenes from 3-D laser scans via per-point assignment of semantic labels. In order to mitigate the difficulties of using a graphical model for modeling the contextual relationships among the 3-D points, we instead propose a multi-stage inference procedure to ca...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2616 |
---|---|
container_issue | |
container_start_page | 2609 |
container_title | |
container_volume | |
creator | Xuehan Xiong Munoz, Daniel Bagnell, J. Andrew Hebert, Martial |
description | We address the problem of understanding scenes from 3-D laser scans via per-point assignment of semantic labels. In order to mitigate the difficulties of using a graphical model for modeling the contextual relationships among the 3-D points, we instead propose a multi-stage inference procedure to capture these relationships. More specifically, we train this procedure to use point cloud statistics and learn relational information (e.g., tree-trunks are below vegetation) over fine (point-wise) and coarse (region-wise) scales. We evaluate our approach on three different datasets, that were obtained from different sensors, and demonstrate improved performance. |
doi_str_mv | 10.1109/ICRA.2011.5980125 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5980125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5980125</ieee_id><sourcerecordid>5980125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-d7b63cb84aea3b34ebe5228a580beb2ed99d3f941b473ff8de489ff6e860c42e3</originalsourceid><addsrcrecordid>eNo1kNtKw0AYhNcTGGseQLzZF0jc8-GypFULBUEUvCt7-CMrNYnZWOjbW7HOzcB8w1wMQjeU1JQSe7dqnuc1I5TW0hpCmTxBV1RRZgQ30p6igkmtK2L02xkqrTb_TMlzVFAiSSU0s5eozPmDHKSU1YwVaMGrBc4BOsCuc9t9ThnvksMZvr6hCxDxMEJMYUp9l3G_gxEPfeqmfKhHPML7b36NLlq3zVAefYZe75cvzWO1fnpYNfN1FZhSUxW1Vzx4Ixw47rkAD5Ix46QhHjyDaG3krRXUC83b1kQQxratAqNIEAz4DN3-7SYA2Axj-nTjfnM8hP8Ao85QhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3-D scene analysis via sequenced predictions over points and regions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xuehan Xiong ; Munoz, Daniel ; Bagnell, J. Andrew ; Hebert, Martial</creator><creatorcontrib>Xuehan Xiong ; Munoz, Daniel ; Bagnell, J. Andrew ; Hebert, Martial</creatorcontrib><description>We address the problem of understanding scenes from 3-D laser scans via per-point assignment of semantic labels. In order to mitigate the difficulties of using a graphical model for modeling the contextual relationships among the 3-D points, we instead propose a multi-stage inference procedure to capture these relationships. More specifically, we train this procedure to use point cloud statistics and learn relational information (e.g., tree-trunks are below vegetation) over fine (point-wise) and coarse (region-wise) scales. We evaluate our approach on three different datasets, that were obtained from different sensors, and demonstrate improved performance.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9781612843865</identifier><identifier>ISBN: 1612843867</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1612843859</identifier><identifier>EISBN: 1612843808</identifier><identifier>EISBN: 9781612843858</identifier><identifier>EISBN: 9781612843803</identifier><identifier>DOI: 10.1109/ICRA.2011.5980125</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Context ; Graphical models ; Solid modeling ; Stacking ; Training ; Vegetation</subject><ispartof>2011 IEEE International Conference on Robotics and Automation, 2011, p.2609-2616</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-d7b63cb84aea3b34ebe5228a580beb2ed99d3f941b473ff8de489ff6e860c42e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5980125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5980125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xuehan Xiong</creatorcontrib><creatorcontrib>Munoz, Daniel</creatorcontrib><creatorcontrib>Bagnell, J. Andrew</creatorcontrib><creatorcontrib>Hebert, Martial</creatorcontrib><title>3-D scene analysis via sequenced predictions over points and regions</title><title>2011 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>We address the problem of understanding scenes from 3-D laser scans via per-point assignment of semantic labels. In order to mitigate the difficulties of using a graphical model for modeling the contextual relationships among the 3-D points, we instead propose a multi-stage inference procedure to capture these relationships. More specifically, we train this procedure to use point cloud statistics and learn relational information (e.g., tree-trunks are below vegetation) over fine (point-wise) and coarse (region-wise) scales. We evaluate our approach on three different datasets, that were obtained from different sensors, and demonstrate improved performance.</description><subject>Buildings</subject><subject>Context</subject><subject>Graphical models</subject><subject>Solid modeling</subject><subject>Stacking</subject><subject>Training</subject><subject>Vegetation</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781612843865</isbn><isbn>1612843867</isbn><isbn>1612843859</isbn><isbn>1612843808</isbn><isbn>9781612843858</isbn><isbn>9781612843803</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKw0AYhNcTGGseQLzZF0jc8-GypFULBUEUvCt7-CMrNYnZWOjbW7HOzcB8w1wMQjeU1JQSe7dqnuc1I5TW0hpCmTxBV1RRZgQ30p6igkmtK2L02xkqrTb_TMlzVFAiSSU0s5eozPmDHKSU1YwVaMGrBc4BOsCuc9t9ThnvksMZvr6hCxDxMEJMYUp9l3G_gxEPfeqmfKhHPML7b36NLlq3zVAefYZe75cvzWO1fnpYNfN1FZhSUxW1Vzx4Ixw47rkAD5Ix46QhHjyDaG3krRXUC83b1kQQxratAqNIEAz4DN3-7SYA2Axj-nTjfnM8hP8Ao85QhA</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Xuehan Xiong</creator><creator>Munoz, Daniel</creator><creator>Bagnell, J. Andrew</creator><creator>Hebert, Martial</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>3-D scene analysis via sequenced predictions over points and regions</title><author>Xuehan Xiong ; Munoz, Daniel ; Bagnell, J. Andrew ; Hebert, Martial</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-d7b63cb84aea3b34ebe5228a580beb2ed99d3f941b473ff8de489ff6e860c42e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Buildings</topic><topic>Context</topic><topic>Graphical models</topic><topic>Solid modeling</topic><topic>Stacking</topic><topic>Training</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xuehan Xiong</creatorcontrib><creatorcontrib>Munoz, Daniel</creatorcontrib><creatorcontrib>Bagnell, J. Andrew</creatorcontrib><creatorcontrib>Hebert, Martial</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xuehan Xiong</au><au>Munoz, Daniel</au><au>Bagnell, J. Andrew</au><au>Hebert, Martial</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3-D scene analysis via sequenced predictions over points and regions</atitle><btitle>2011 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2011-05</date><risdate>2011</risdate><spage>2609</spage><epage>2616</epage><pages>2609-2616</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9781612843865</isbn><isbn>1612843867</isbn><eisbn>1612843859</eisbn><eisbn>1612843808</eisbn><eisbn>9781612843858</eisbn><eisbn>9781612843803</eisbn><abstract>We address the problem of understanding scenes from 3-D laser scans via per-point assignment of semantic labels. In order to mitigate the difficulties of using a graphical model for modeling the contextual relationships among the 3-D points, we instead propose a multi-stage inference procedure to capture these relationships. More specifically, we train this procedure to use point cloud statistics and learn relational information (e.g., tree-trunks are below vegetation) over fine (point-wise) and coarse (region-wise) scales. We evaluate our approach on three different datasets, that were obtained from different sensors, and demonstrate improved performance.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2011.5980125</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | 2011 IEEE International Conference on Robotics and Automation, 2011, p.2609-2616 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_5980125 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Buildings Context Graphical models Solid modeling Stacking Training Vegetation |
title | 3-D scene analysis via sequenced predictions over points and regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3-D%20scene%20analysis%20via%20sequenced%20predictions%20over%20points%20and%20regions&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Xuehan%20Xiong&rft.date=2011-05&rft.spage=2609&rft.epage=2616&rft.pages=2609-2616&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9781612843865&rft.isbn_list=1612843867&rft_id=info:doi/10.1109/ICRA.2011.5980125&rft_dat=%3Cieee_6IE%3E5980125%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843859&rft.eisbn_list=1612843808&rft.eisbn_list=9781612843858&rft.eisbn_list=9781612843803&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5980125&rfr_iscdi=true |