3-D scene analysis via sequenced predictions over points and regions

We address the problem of understanding scenes from 3-D laser scans via per-point assignment of semantic labels. In order to mitigate the difficulties of using a graphical model for modeling the contextual relationships among the 3-D points, we instead propose a multi-stage inference procedure to ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xuehan Xiong, Munoz, Daniel, Bagnell, J. Andrew, Hebert, Martial
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem of understanding scenes from 3-D laser scans via per-point assignment of semantic labels. In order to mitigate the difficulties of using a graphical model for modeling the contextual relationships among the 3-D points, we instead propose a multi-stage inference procedure to capture these relationships. More specifically, we train this procedure to use point cloud statistics and learn relational information (e.g., tree-trunks are below vegetation) over fine (point-wise) and coarse (region-wise) scales. We evaluate our approach on three different datasets, that were obtained from different sensors, and demonstrate improved performance.
ISSN:1050-4729
2577-087X
DOI:10.1109/ICRA.2011.5980125