Efficient, generalized indoor WiFi GraphSLAM
The widespread deployment of wireless networks presents an opportunity for localization and mapping using only signal-strength measurements. The current state of the art is to use Gaussian process latent variable models (GP-LVM). This method works well, but relies on a signature uniqueness assumptio...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The widespread deployment of wireless networks presents an opportunity for localization and mapping using only signal-strength measurements. The current state of the art is to use Gaussian process latent variable models (GP-LVM). This method works well, but relies on a signature uniqueness assumption which limits its applicability to only signal-rich environments. Moreover, it does not scale computationally to large sets of data, requiring O(N 3 ) operations per iteration. We present a GraphSLAM-like algorithm for signal strength SLAM. Our algorithm shares many of the benefits of Gaussian processes, yet is viable for a broader range of environments since it makes no signature uniqueness assumptions. It is also more tractable to larger map sizes, requiring O(N 2 ) operations per iteration. We compare our algorithm to a laser-SLAM ground truth, showing it produces excellent results in practice. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ICRA.2011.5979643 |