A frequent keyword-set based algorithm for topic modeling and clustering of research papers
In this paper we introduce a novel and efficient approach to detect topics in a large corpus of research papers. With rapidly growing size of academic literature, the problem of topic detection has become a very challenging task. We present a unique approach that uses closed frequent keyword-set to...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce a novel and efficient approach to detect topics in a large corpus of research papers. With rapidly growing size of academic literature, the problem of topic detection has become a very challenging task. We present a unique approach that uses closed frequent keyword-set to form topics. Our approach also provides a natural method to cluster the research papers into hierarchical, overlapping clusters using topic as similarity measure. To rank the research papers in the topic cluster, we devise a modified PageRank algorithm that assigns an authoritative score to each research paper by considering the sub-graph in which the research paper appears. We test our algorithms on the DBLP dataset and experimentally show that our algorithms are fast, effective and scalable. |
---|---|
ISSN: | 2155-6938 2155-6946 |
DOI: | 10.1109/DMO.2011.5976511 |