A Lyapunov-Function-Based Control for a Three-Phase Shunt Hybrid Active Filter
In this paper, an energy-based Lyapunov function control technique is developed for a three-phase shunt hybrid active filter (SH-AF) to compensate harmonics generated by nonlinear loads and is applied for balanced operation. The method provides compensation for harmonic load current components. The...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2012-03, Vol.59 (3), p.1418-1429 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, an energy-based Lyapunov function control technique is developed for a three-phase shunt hybrid active filter (SH-AF) to compensate harmonics generated by nonlinear loads and is applied for balanced operation. The method provides compensation for harmonic load current components. The strategy determines the control law that makes the derivative of the Lyapunov function always negative for all values of the states. The dc bus voltage of the SH-AF is maintained to 50 V, which is significantly lower than that of the conventional hybrid active filter. The rating of the active filter in the SH-AF system is much smaller than the one used in the conventional shunt active power filter because the passive filter takes care of the major burden of compensation. The SH-AF performances, during both nominal and severe operating conditions, are then evaluated using a dSPACE DS1104 controller board, supported by a Matlab/Simulink Real-Time Workshop environment. A significantly high correlation between the experimental results and the theoretical model, implemented with Simulink/Matlab, is obtained. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2011.2163370 |