Echo State Gaussian Process
Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple computationally efficient algorithm. ESNs have greatly facilitated the practical application of RNN...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2011-09, Vol.22 (9), p.1435-1445 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple computationally efficient algorithm. ESNs have greatly facilitated the practical application of RNNs, outperforming classical approaches on a number of benchmark tasks. In this paper, we introduce a novel Bayesian approach toward ESNs, the echo state Gaussian process (ESGP). The ESGP combines the merits of ESNs and Gaussian processes to provide a more robust alternative to conventional reservoir computing networks while also offering a measure of confidence on the generated predictions (in the form of a predictive distribution). We exhibit the merits of our approach in a number of applications, considering both benchmark datasets and real-world applications, where we show that our method offers a significant enhancement in the dynamical data modeling capabilities of ESNs. Additionally, we also show that our method is orders of magnitude more computationally efficient compared to existing Gaussian process-based methods for dynamical data modeling, without compromises in the obtained predictive performance. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2011.2162109 |