AVF Analysis Acceleration via Hierarchical Fault Pruning

The notion of Architectural Vulnerability Factor (AVF) has been extensively used by designers to evaluate various aspects of design robustness. While AVF is a very accurate way of assessing element resiliency, its calculation requires rigorous and extremely time-consuming experiments. In response, d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maniatakos, M., Tirumurti, C., Jas, A., Makris, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The notion of Architectural Vulnerability Factor (AVF) has been extensively used by designers to evaluate various aspects of design robustness. While AVF is a very accurate way of assessing element resiliency, its calculation requires rigorous and extremely time-consuming experiments. In response, designers have introduced various methodologies that allow AVF calculation within reasonable time, at the cost of some loss of accuracy. In this paper, we present a method for calculating the AVF of design elements-using Statistical Fault Injection (SFI)-with equal accuracy but several orders of magnitude faster than traditional SFI techniques. Our method partitions the design into various hierarchical levels and systematically performs incremental fault injections to generate the AVF numbers. The presented method has been applied on an Intel microprocessor, where experimental results corroborate its ability to achieve great speed-up while maintaining perfect accuracy in calculating AVF.
ISSN:1530-1877
1558-1780
DOI:10.1109/ETS.2011.42