Design of a Low-Energy Nonvolatile Fully-Parallel Ternary CAM Using a Two-Level Segmented Match-Line Scheme
A novel compact and static-power-free nonvolatile ternary content-addressable memory (TCAM) cell, where two-bit nonvolatile magnetic tunnel junction (MTJ) devices are stacked over the comparison logic circuit, is proposed for a high-density and ultra low-energy fully-parallel TCAM. The use of nonvol...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel compact and static-power-free nonvolatile ternary content-addressable memory (TCAM) cell, where two-bit nonvolatile magnetic tunnel junction (MTJ) devices are stacked over the comparison logic circuit, is proposed for a high-density and ultra low-energy fully-parallel TCAM. The use of nonvolatile logic-in-memory circuit architecture makes it possible to realize 6T-2MTJ TCAM cell structure. The 144-bit word match-line is divided into two parts (first 10-bit and last 134-bit parts), which greatly reduces the dynamic power dissipation with small overhead of the switching delay. In fact, it is evaluated by the HSPICE simulation under a 90nm CMOS/MTJ technology that the search energy (power-delay product) of the proposed TCAM is reduced to 16 percent in comparison with that of a nonvolatile TCAM without using a segmented match-line scheme. |
---|---|
ISSN: | 0195-623X 2378-2226 |
DOI: | 10.1109/ISMVL.2011.41 |