Deep belief nets for natural language call-routing
This paper considers application of Deep Belief Nets (DBNs) to natural language call routing. DBNs have been successfully applied to a number of tasks, including image, audio and speech classification, thanks to the recent discovery of an efficient learning technique. DBNs learn a multi-layer genera...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers application of Deep Belief Nets (DBNs) to natural language call routing. DBNs have been successfully applied to a number of tasks, including image, audio and speech classification, thanks to the recent discovery of an efficient learning technique. DBNs learn a multi-layer generative model from unlabeled data and the features discovered by this model are then used to initialize a feed-forward neural network which is fine-tuned with backpropagation. We compare a DBN-initialized neural network to three widely used text classification algorithms; Support Vector machines (SVM), Boosting and Maximum Entropy (MaxEnt). The DBN-based model gives a call-routing classification accuracy that is equal to the best of the other models even though it currently uses an impoverished representation of the input. |
---|---|
ISSN: | 1520-6149 |
DOI: | 10.1109/ICASSP.2011.5947649 |