A segment-level confidence measure for Spoken Document Retrieval

This paper presents a semantic confidence measure that aims to predict the relevance of automatic transcripts for a task of Spoken Document Retrieval (SDR). The proposed predicting method relies on the combination of Automatic Speech Recognition (ASR) confidence measure and a Semantic Compacity Inde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Senay, Gregory, Linares, Georges, Lecouteux, Benjamin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a semantic confidence measure that aims to predict the relevance of automatic transcripts for a task of Spoken Document Retrieval (SDR). The proposed predicting method relies on the combination of Automatic Speech Recognition (ASR) confidence measure and a Semantic Compacity Index (SCI), that estimates the relevance of the words considering the semantic context in which they occurred. Experiments are conducted on the French Broadcast news corpus ESTER, by simulating a classical SDR usage scenario : users submit text-queries to a search engine that is expected to return the most relevant documents regarding the query. Results demonstrate the interest of using semantic level in formation to predict the transcription indexability.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2011.5947616