Multilayer perceptron with sparse hidden outputs for phoneme recognition

This paper introduces the sparse multilayer perceptron (SMLP) which learns the transformation from the inputs to the targets as in multilayer perceptron (MLP) while the outputs of one of the internal hidden layers is forced to be sparse. This is achieved by adding a sparse regularization term to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sivaram, G. S. V. S., Hermansky, Hynek
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces the sparse multilayer perceptron (SMLP) which learns the transformation from the inputs to the targets as in multilayer perceptron (MLP) while the outputs of one of the internal hidden layers is forced to be sparse. This is achieved by adding a sparse regularization term to the cross-entropy cost and learning the parameters of the network to minimize the joint cost. On the TIMIT phoneme recognition task, the SMLP based system trained using perceptual linear prediction (PLP) features performs better than the conventional MLP based system. Furthermore, their combination yields a phoneme error rate of 21.2%, a relative improvement of 6.2% over the baseline.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2011.5947563