A reversible jump MCMC algorithm for Bayesian curve fitting by using smooth transition regression models

This paper proposes a Bayesian algorithm to estimate the parameters of a smooth transition regression model. With in this model, time series are divided into segments and a linear regression analysis is performed on each segment. Unlike a piecewise regression model, smooth transition functions are i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sanquer, Matthieu, Chatelain, Florent, El-Guedri, Mabrouka, Martin, Nadine
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a Bayesian algorithm to estimate the parameters of a smooth transition regression model. With in this model, time series are divided into segments and a linear regression analysis is performed on each segment. Unlike a piecewise regression model, smooth transition functions are introduced to model smooth transitions between the sub-models. Appropriate prior distributions are associated with each parameter to penalize a data-driven criterion, leading to a fully Bayesian model. Then, a reversible jump Markov Chain Monte Carlo algorithm is derived to sample the parameter posterior distributions. It allows one to compute standard Bayesian estimators, providing a sparse representation of the data. Results are obtained for real-world electrical transients with a view to non-intrusive load monitoring applications.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2011.5947219