Plastic optical fiber sensor for displacement monitoring with dual-wavelength compensation of power fluctuations
The paper describes the use of a dual-wavelength technique for compensating power fluctuations in intensity-based plastic optical fiber sensors for displacement measurements. The sensor consists of a fiber that collects the reflected light from a target and retrieves its distance from the signal att...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper describes the use of a dual-wavelength technique for compensating power fluctuations in intensity-based plastic optical fiber sensors for displacement measurements. The sensor consists of a fiber that collects the reflected light from a target and retrieves its distance from the signal attenuation. Besides a measurement signal at 450 nm that travels back and forth the displacement region and is attenuated according to the target position, a compensation signal at 650 nm propagates along the fiber and is back-reflected at the fiber tip by a dichroic filter. The compensation signal undergoes power fluctuations due to environmental stress of the fiber and is therefore used as a reference to correct the measurement signal. A demonstrator, which includes a sensor, the acquisition circuitry and signal processing software, was built and tested in laboratory and proved that the measurement signal is capable of monitoring displacements in the range (0 ÷ 10) mm even at low power, while the reference signal is not influenced by the position of the reflecting target and can therefore be used as reliable reference. |
---|---|
ISSN: | 1091-5281 |
DOI: | 10.1109/IMTC.2011.5944187 |