On the integration of skilled robot motions for productivity in manufacturing
Robots used in manufacturing today are tailored to their tasks by system integration based on expert knowledge concerning both production and machine control. For upcoming new generations of even more flexible robot solutions, in applications such as dexterous assembly, the robot setup and programmi...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Robots used in manufacturing today are tailored to their tasks by system integration based on expert knowledge concerning both production and machine control. For upcoming new generations of even more flexible robot solutions, in applications such as dexterous assembly, the robot setup and programming gets even more challenging. Reuse of solutions in terms of parameters, controls, process tuning, and of software modules in general then gets increasingly important. There has been valuable progress within reuse of automation solutions when machines comply with standards and behave according to nominal models. However, more flexible robots with sensor-based manipulation skills and cognitive functions for human interaction are far too complex to manage, and solutions are rarely reusable since knowledge is either implicit in imperative software or not captured in machine readable form. We propose techniques that build on existing knowledge by converting structured data into an RDF-based knowledge base. By enhancements of industrial control systems and available engineering tools, such knowledge can be gradually extended as part of the interaction during the definition of the robot task. |
---|---|
DOI: | 10.1109/ISAM.2011.5942366 |