VLSI implementation of a modular and programmable neural architecture
A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 outpu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | |
container_start_page | 218 |
container_title | |
container_volume | |
creator | Cardarilli, G.C. D'Alessandro, C. Marinucci, P. Bordoni, F. |
description | A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 output neurons with 1152 9-bit synapses. This single layer network can be reconfigured as a multi-layer network. Another important chip feature is the possibility of connecting the chips in order to obtain a more complex multi-layer neural network. The core of the authors' architecture is a very efficient circuit block, "distributed sigmoid-synapse", that they used to implement each of the 2304 5-bit synapses included in the programmable neural network. A prototyping chip, including all the basic block of neural architecture, is now processed by ES2 with 1.0 /spl mu/m CMOS technology. Finally, the authors report the architecture of a possible system for the evaluation of the VLSI chip performances. Parameter mismatches present in the chip were considered to be not critical because it is possible to account them during the training of the neural network by using a special chip-in-the-loop training algorithm. The authors planned to use this chip in pattern recognition and image processing applications. |
doi_str_mv | 10.1109/ICMNN.1994.593713 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_593713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>593713</ieee_id><sourcerecordid>593713</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-94c097ebd4b8292a8c6890f8f6a368eb96e9d6c25fc9acebe1e17747a11fe2a13</originalsourceid><addsrcrecordid>eNotj8tKxDAUQAMiKGM_QFf5gdbctM1jKWXUQmdcOLgdbtMbjfRF2i78e4XxbM7uwGHsHkQGIOxjXR2OxwysLbLS5hryK5ZYbYQBo5QGoW9Ysizf4o-yNKWUt2z_0bzXPAxzTwONK65hGvnkOfJh6rYeI8ex43OcPiMOA7Y98ZG2iD3H6L7CSm7dIt2xa4_9Qsm_d-z0vD9Vr2nz9lJXT00ajF5TWzhhNbVd0RppJRqnjBXeeIW5MtRaRbZTTpbeWXTUEhBoXWgE8CQR8h17uGQDEZ3nGAaMP-fLav4L_u5Ktg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>VLSI implementation of a modular and programmable neural architecture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cardarilli, G.C. ; D'Alessandro, C. ; Marinucci, P. ; Bordoni, F.</creator><creatorcontrib>Cardarilli, G.C. ; D'Alessandro, C. ; Marinucci, P. ; Bordoni, F.</creatorcontrib><description>A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 output neurons with 1152 9-bit synapses. This single layer network can be reconfigured as a multi-layer network. Another important chip feature is the possibility of connecting the chips in order to obtain a more complex multi-layer neural network. The core of the authors' architecture is a very efficient circuit block, "distributed sigmoid-synapse", that they used to implement each of the 2304 5-bit synapses included in the programmable neural network. A prototyping chip, including all the basic block of neural architecture, is now processed by ES2 with 1.0 /spl mu/m CMOS technology. Finally, the authors report the architecture of a possible system for the evaluation of the VLSI chip performances. Parameter mismatches present in the chip were considered to be not critical because it is possible to account them during the training of the neural network by using a special chip-in-the-loop training algorithm. The authors planned to use this chip in pattern recognition and image processing applications.</description><identifier>ISBN: 9780818667107</identifier><identifier>ISBN: 0818667109</identifier><identifier>DOI: 10.1109/ICMNN.1994.593713</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; CMOS process ; CMOS technology ; Feedforward neural networks ; Joining processes ; Multi-layer neural network ; Neural networks ; Neurons ; Prototypes ; Very large scale integration</subject><ispartof>Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems, 1994, p.218-225</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/593713$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/593713$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cardarilli, G.C.</creatorcontrib><creatorcontrib>D'Alessandro, C.</creatorcontrib><creatorcontrib>Marinucci, P.</creatorcontrib><creatorcontrib>Bordoni, F.</creatorcontrib><title>VLSI implementation of a modular and programmable neural architecture</title><title>Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems</title><addtitle>ICMNN</addtitle><description>A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 output neurons with 1152 9-bit synapses. This single layer network can be reconfigured as a multi-layer network. Another important chip feature is the possibility of connecting the chips in order to obtain a more complex multi-layer neural network. The core of the authors' architecture is a very efficient circuit block, "distributed sigmoid-synapse", that they used to implement each of the 2304 5-bit synapses included in the programmable neural network. A prototyping chip, including all the basic block of neural architecture, is now processed by ES2 with 1.0 /spl mu/m CMOS technology. Finally, the authors report the architecture of a possible system for the evaluation of the VLSI chip performances. Parameter mismatches present in the chip were considered to be not critical because it is possible to account them during the training of the neural network by using a special chip-in-the-loop training algorithm. The authors planned to use this chip in pattern recognition and image processing applications.</description><subject>Circuits</subject><subject>CMOS process</subject><subject>CMOS technology</subject><subject>Feedforward neural networks</subject><subject>Joining processes</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Prototypes</subject><subject>Very large scale integration</subject><isbn>9780818667107</isbn><isbn>0818667109</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxDAUQAMiKGM_QFf5gdbctM1jKWXUQmdcOLgdbtMbjfRF2i78e4XxbM7uwGHsHkQGIOxjXR2OxwysLbLS5hryK5ZYbYQBo5QGoW9Ysizf4o-yNKWUt2z_0bzXPAxzTwONK65hGvnkOfJh6rYeI8ex43OcPiMOA7Y98ZG2iD3H6L7CSm7dIt2xa4_9Qsm_d-z0vD9Vr2nz9lJXT00ajF5TWzhhNbVd0RppJRqnjBXeeIW5MtRaRbZTTpbeWXTUEhBoXWgE8CQR8h17uGQDEZ3nGAaMP-fLav4L_u5Ktg</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Cardarilli, G.C.</creator><creator>D'Alessandro, C.</creator><creator>Marinucci, P.</creator><creator>Bordoni, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>VLSI implementation of a modular and programmable neural architecture</title><author>Cardarilli, G.C. ; D'Alessandro, C. ; Marinucci, P. ; Bordoni, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-94c097ebd4b8292a8c6890f8f6a368eb96e9d6c25fc9acebe1e17747a11fe2a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Circuits</topic><topic>CMOS process</topic><topic>CMOS technology</topic><topic>Feedforward neural networks</topic><topic>Joining processes</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Prototypes</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Cardarilli, G.C.</creatorcontrib><creatorcontrib>D'Alessandro, C.</creatorcontrib><creatorcontrib>Marinucci, P.</creatorcontrib><creatorcontrib>Bordoni, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cardarilli, G.C.</au><au>D'Alessandro, C.</au><au>Marinucci, P.</au><au>Bordoni, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>VLSI implementation of a modular and programmable neural architecture</atitle><btitle>Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems</btitle><stitle>ICMNN</stitle><date>1994</date><risdate>1994</risdate><spage>218</spage><epage>225</epage><pages>218-225</pages><isbn>9780818667107</isbn><isbn>0818667109</isbn><abstract>A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 output neurons with 1152 9-bit synapses. This single layer network can be reconfigured as a multi-layer network. Another important chip feature is the possibility of connecting the chips in order to obtain a more complex multi-layer neural network. The core of the authors' architecture is a very efficient circuit block, "distributed sigmoid-synapse", that they used to implement each of the 2304 5-bit synapses included in the programmable neural network. A prototyping chip, including all the basic block of neural architecture, is now processed by ES2 with 1.0 /spl mu/m CMOS technology. Finally, the authors report the architecture of a possible system for the evaluation of the VLSI chip performances. Parameter mismatches present in the chip were considered to be not critical because it is possible to account them during the training of the neural network by using a special chip-in-the-loop training algorithm. The authors planned to use this chip in pattern recognition and image processing applications.</abstract><pub>IEEE</pub><doi>10.1109/ICMNN.1994.593713</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780818667107 |
ispartof | Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems, 1994, p.218-225 |
issn | |
language | eng |
recordid | cdi_ieee_primary_593713 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Circuits CMOS process CMOS technology Feedforward neural networks Joining processes Multi-layer neural network Neural networks Neurons Prototypes Very large scale integration |
title | VLSI implementation of a modular and programmable neural architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=VLSI%20implementation%20of%20a%20modular%20and%20programmable%20neural%20architecture&rft.btitle=Proceedings%20of%20the%20Fourth%20International%20Conference%20on%20Microelectronics%20for%20Neural%20Networks%20and%20Fuzzy%20Systems&rft.au=Cardarilli,%20G.C.&rft.date=1994&rft.spage=218&rft.epage=225&rft.pages=218-225&rft.isbn=9780818667107&rft.isbn_list=0818667109&rft_id=info:doi/10.1109/ICMNN.1994.593713&rft_dat=%3Cieee_6IE%3E593713%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=593713&rfr_iscdi=true |