VLSI implementation of a modular and programmable neural architecture

A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 outpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cardarilli, G.C., D'Alessandro, C., Marinucci, P., Bordoni, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue
container_start_page 218
container_title
container_volume
creator Cardarilli, G.C.
D'Alessandro, C.
Marinucci, P.
Bordoni, F.
description A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 output neurons with 1152 9-bit synapses. This single layer network can be reconfigured as a multi-layer network. Another important chip feature is the possibility of connecting the chips in order to obtain a more complex multi-layer neural network. The core of the authors' architecture is a very efficient circuit block, "distributed sigmoid-synapse", that they used to implement each of the 2304 5-bit synapses included in the programmable neural network. A prototyping chip, including all the basic block of neural architecture, is now processed by ES2 with 1.0 /spl mu/m CMOS technology. Finally, the authors report the architecture of a possible system for the evaluation of the VLSI chip performances. Parameter mismatches present in the chip were considered to be not critical because it is possible to account them during the training of the neural network by using a special chip-in-the-loop training algorithm. The authors planned to use this chip in pattern recognition and image processing applications.
doi_str_mv 10.1109/ICMNN.1994.593713
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_593713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>593713</ieee_id><sourcerecordid>593713</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-94c097ebd4b8292a8c6890f8f6a368eb96e9d6c25fc9acebe1e17747a11fe2a13</originalsourceid><addsrcrecordid>eNotj8tKxDAUQAMiKGM_QFf5gdbctM1jKWXUQmdcOLgdbtMbjfRF2i78e4XxbM7uwGHsHkQGIOxjXR2OxwysLbLS5hryK5ZYbYQBo5QGoW9Ysizf4o-yNKWUt2z_0bzXPAxzTwONK65hGvnkOfJh6rYeI8ex43OcPiMOA7Y98ZG2iD3H6L7CSm7dIt2xa4_9Qsm_d-z0vD9Vr2nz9lJXT00ajF5TWzhhNbVd0RppJRqnjBXeeIW5MtRaRbZTTpbeWXTUEhBoXWgE8CQR8h17uGQDEZ3nGAaMP-fLav4L_u5Ktg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>VLSI implementation of a modular and programmable neural architecture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cardarilli, G.C. ; D'Alessandro, C. ; Marinucci, P. ; Bordoni, F.</creator><creatorcontrib>Cardarilli, G.C. ; D'Alessandro, C. ; Marinucci, P. ; Bordoni, F.</creatorcontrib><description>A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 output neurons with 1152 9-bit synapses. This single layer network can be reconfigured as a multi-layer network. Another important chip feature is the possibility of connecting the chips in order to obtain a more complex multi-layer neural network. The core of the authors' architecture is a very efficient circuit block, "distributed sigmoid-synapse", that they used to implement each of the 2304 5-bit synapses included in the programmable neural network. A prototyping chip, including all the basic block of neural architecture, is now processed by ES2 with 1.0 /spl mu/m CMOS technology. Finally, the authors report the architecture of a possible system for the evaluation of the VLSI chip performances. Parameter mismatches present in the chip were considered to be not critical because it is possible to account them during the training of the neural network by using a special chip-in-the-loop training algorithm. The authors planned to use this chip in pattern recognition and image processing applications.</description><identifier>ISBN: 9780818667107</identifier><identifier>ISBN: 0818667109</identifier><identifier>DOI: 10.1109/ICMNN.1994.593713</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; CMOS process ; CMOS technology ; Feedforward neural networks ; Joining processes ; Multi-layer neural network ; Neural networks ; Neurons ; Prototypes ; Very large scale integration</subject><ispartof>Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems, 1994, p.218-225</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/593713$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/593713$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cardarilli, G.C.</creatorcontrib><creatorcontrib>D'Alessandro, C.</creatorcontrib><creatorcontrib>Marinucci, P.</creatorcontrib><creatorcontrib>Bordoni, F.</creatorcontrib><title>VLSI implementation of a modular and programmable neural architecture</title><title>Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems</title><addtitle>ICMNN</addtitle><description>A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 output neurons with 1152 9-bit synapses. This single layer network can be reconfigured as a multi-layer network. Another important chip feature is the possibility of connecting the chips in order to obtain a more complex multi-layer neural network. The core of the authors' architecture is a very efficient circuit block, "distributed sigmoid-synapse", that they used to implement each of the 2304 5-bit synapses included in the programmable neural network. A prototyping chip, including all the basic block of neural architecture, is now processed by ES2 with 1.0 /spl mu/m CMOS technology. Finally, the authors report the architecture of a possible system for the evaluation of the VLSI chip performances. Parameter mismatches present in the chip were considered to be not critical because it is possible to account them during the training of the neural network by using a special chip-in-the-loop training algorithm. The authors planned to use this chip in pattern recognition and image processing applications.</description><subject>Circuits</subject><subject>CMOS process</subject><subject>CMOS technology</subject><subject>Feedforward neural networks</subject><subject>Joining processes</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Prototypes</subject><subject>Very large scale integration</subject><isbn>9780818667107</isbn><isbn>0818667109</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxDAUQAMiKGM_QFf5gdbctM1jKWXUQmdcOLgdbtMbjfRF2i78e4XxbM7uwGHsHkQGIOxjXR2OxwysLbLS5hryK5ZYbYQBo5QGoW9Ysizf4o-yNKWUt2z_0bzXPAxzTwONK65hGvnkOfJh6rYeI8ex43OcPiMOA7Y98ZG2iD3H6L7CSm7dIt2xa4_9Qsm_d-z0vD9Vr2nz9lJXT00ajF5TWzhhNbVd0RppJRqnjBXeeIW5MtRaRbZTTpbeWXTUEhBoXWgE8CQR8h17uGQDEZ3nGAaMP-fLav4L_u5Ktg</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Cardarilli, G.C.</creator><creator>D'Alessandro, C.</creator><creator>Marinucci, P.</creator><creator>Bordoni, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>VLSI implementation of a modular and programmable neural architecture</title><author>Cardarilli, G.C. ; D'Alessandro, C. ; Marinucci, P. ; Bordoni, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-94c097ebd4b8292a8c6890f8f6a368eb96e9d6c25fc9acebe1e17747a11fe2a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Circuits</topic><topic>CMOS process</topic><topic>CMOS technology</topic><topic>Feedforward neural networks</topic><topic>Joining processes</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Prototypes</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Cardarilli, G.C.</creatorcontrib><creatorcontrib>D'Alessandro, C.</creatorcontrib><creatorcontrib>Marinucci, P.</creatorcontrib><creatorcontrib>Bordoni, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cardarilli, G.C.</au><au>D'Alessandro, C.</au><au>Marinucci, P.</au><au>Bordoni, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>VLSI implementation of a modular and programmable neural architecture</atitle><btitle>Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems</btitle><stitle>ICMNN</stitle><date>1994</date><risdate>1994</risdate><spage>218</spage><epage>225</epage><pages>218-225</pages><isbn>9780818667107</isbn><isbn>0818667109</isbn><abstract>A mixed-signal VLSI chip architecture for multi-layer feedforward neural network implementation with digitally programmable synapses is presented. The chip realizes a fully connected single-layer network, configurable as a 48 input/48 output neurons with 2304 5-bit synapses or as a 24 input/24 output neurons with 1152 9-bit synapses. This single layer network can be reconfigured as a multi-layer network. Another important chip feature is the possibility of connecting the chips in order to obtain a more complex multi-layer neural network. The core of the authors' architecture is a very efficient circuit block, "distributed sigmoid-synapse", that they used to implement each of the 2304 5-bit synapses included in the programmable neural network. A prototyping chip, including all the basic block of neural architecture, is now processed by ES2 with 1.0 /spl mu/m CMOS technology. Finally, the authors report the architecture of a possible system for the evaluation of the VLSI chip performances. Parameter mismatches present in the chip were considered to be not critical because it is possible to account them during the training of the neural network by using a special chip-in-the-loop training algorithm. The authors planned to use this chip in pattern recognition and image processing applications.</abstract><pub>IEEE</pub><doi>10.1109/ICMNN.1994.593713</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818667107
ispartof Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems, 1994, p.218-225
issn
language eng
recordid cdi_ieee_primary_593713
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuits
CMOS process
CMOS technology
Feedforward neural networks
Joining processes
Multi-layer neural network
Neural networks
Neurons
Prototypes
Very large scale integration
title VLSI implementation of a modular and programmable neural architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=VLSI%20implementation%20of%20a%20modular%20and%20programmable%20neural%20architecture&rft.btitle=Proceedings%20of%20the%20Fourth%20International%20Conference%20on%20Microelectronics%20for%20Neural%20Networks%20and%20Fuzzy%20Systems&rft.au=Cardarilli,%20G.C.&rft.date=1994&rft.spage=218&rft.epage=225&rft.pages=218-225&rft.isbn=9780818667107&rft.isbn_list=0818667109&rft_id=info:doi/10.1109/ICMNN.1994.593713&rft_dat=%3Cieee_6IE%3E593713%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=593713&rfr_iscdi=true