Implications of device diversity for organic localization
Many indoor localization methods are based on the association of 802.11 wireless RF signals from wireless access points (WAPs) with location labels. An "organic" RF positioning system relies on regular users, not dedicated surveyors, to build the map of RF fingerprints to location labels....
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many indoor localization methods are based on the association of 802.11 wireless RF signals from wireless access points (WAPs) with location labels. An "organic" RF positioning system relies on regular users, not dedicated surveyors, to build the map of RF fingerprints to location labels. However, signal variation due to device heterogeneity may degrade localization performance. We analyze the diversity of those signal characteristics pertinent to indoor localization - signal strength and AP detection - as measured by a variety of 802.11 devices. We first analyze signal strength diversity, and show that pairwise linear transformation alone does not solve the problem. We propose kernel estimation with a wide kernel width to reduce the difference in probability estimates. We also investigate diversity in access point detection. We demonstrate that localization performance may degrade significantly when AP detection rate is used as a feature for localization, and correlate the loss of performance to a device dissimilarity measure captured by Kullback-Leibler divergence. Based on this analysis, we show that using only signal strength, without incorporating negative evidence, achieves good localization performance when devices are heterogeneous. |
---|---|
ISSN: | 0743-166X 2641-9874 |
DOI: | 10.1109/INFCOM.2011.5935166 |