A foundation for stochastic bandwidth estimation of networks with random service
We develop a stochastic foundation for bandwidth estimation of networks with random service, where bandwidth availability is expressed in terms of bounding functions with a defined violation probability. Exploiting properties of a stochastic max-plus algebra and system theory, the task of bandwidth...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a stochastic foundation for bandwidth estimation of networks with random service, where bandwidth availability is expressed in terms of bounding functions with a defined violation probability. Exploiting properties of a stochastic max-plus algebra and system theory, the task of bandwidth estimation is formulated as inferring an unknown bounding function from measurements of probing traffic. We derive an estimation methodology that is based on iterative constant rate probes. Our solution provides evidence for the utility of packet trains for bandwidth estimation in the presence of variable cross traffic. Taking advantage of statistical methods, we show how our estimation method can be realized in practice, with adaptive train lengths of probe packets, probing rates, and replicated measurements required to achieve both high accuracy and confidence levels. We evaluate our method in a controlled testbed network, where we show the impact of cross traffic variability on the time-scales of service availability, and provide a comparison with existing bandwidth estimation tools. |
---|---|
ISSN: | 0743-166X 2641-9874 |
DOI: | 10.1109/INFCOM.2011.5934981 |