A latent tensor factorization framework for non-negative convolutive models

Convolutive models emerge in various domains such as acoustics, image processing or seismic sciences. In this work, we investigate the convolutive models and the related deconvolution problems in a latent tensor factorization framework. We decrease the computational complexity of the inference schem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Simsekli, U., Subakan, Y. C., Cemgil, A. T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutive models emerge in various domains such as acoustics, image processing or seismic sciences. In this work, we investigate the convolutive models and the related deconvolution problems in a latent tensor factorization framework. We decrease the computational complexity of the inference scheme by utilizing the Fast Fourier Transform. We also demonstrate how this framework can be used in image deblurring and in more complex models like Non-Negative Matrix Factor Deconvolution (NMFD) model.
ISSN:2165-0608
2693-3616
DOI:10.1109/SIU.2011.5929762