Continuous 3D control of a virtual helicopter using a motor imagery based BCI

Brain-computer interfaces (BCIs) are devices that allow for thought-based control of computer systems. However, sophisticated control of multi-dimensional BCIs has only recently been achieved in non-invasive systems. The design of these systems has focused on giving users fast, autonomous control th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Doud, A. J., Lucas, J. P., Bin He
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brain-computer interfaces (BCIs) are devices that allow for thought-based control of computer systems. However, sophisticated control of multi-dimensional BCIs has only recently been achieved in non-invasive systems. The design of these systems has focused on giving users fast, autonomous control that is both intuitive and accurate. Through the use of electroencephalographic recording techniques, sensorimotor rhythms induced from motor imaginations may be captured and a control signal may be characterized. Here we have trained two subjects with an interactive and continuous protocol to modulate their sensorimotor rhythms to control three-dimensions of motion of a virtual helicopter to reach randomly positioned and oriented rings. The subject group acquired 88% of presented targets and achieved as many as 11 consecutive rings in a five-minute period. Subjects learned to fly quickly, continuously and accurately through golden rings positioned and oriented randomly throughout a 3D virtual space.
ISSN:1948-3546
1948-3554
DOI:10.1109/NER.2011.5910562