Constructive approximations for neural networks by sigmoidal functions

A constructive algorithm for uniformly approximating real continuous mappings by linear combinations of bounded sigmoidal functions is given. G. Cybenko (1989) has demonstrated the existence of uniform approximations to any continuous f provided that sigma is continuous; the proof is nonconstructive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 1990-10, Vol.78 (10), p.1586-1589
1. Verfasser: Jones, L.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1589
container_issue 10
container_start_page 1586
container_title Proceedings of the IEEE
container_volume 78
creator Jones, L.K.
description A constructive algorithm for uniformly approximating real continuous mappings by linear combinations of bounded sigmoidal functions is given. G. Cybenko (1989) has demonstrated the existence of uniform approximations to any continuous f provided that sigma is continuous; the proof is nonconstructive, relying on the Hahn-Branch theorem and the dual characterization of C(I/sup n/). Cybenko's result is extended to include any bounded sigmoidal (even nonmeasurable ones). The approximating functions are explicitly constructed. The number of terms in the linear combination is minimal for first-order terms.< >
doi_str_mv 10.1109/5.58342
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_58342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>58342</ieee_id><sourcerecordid>25608569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-107f35b6bbb4499ed3e819c4760450c1c06ce74969fc3653a80bedbcd4ddef683</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EEqUgZrZMMAWe44_aI6ooIFVigdlKnGdkSONiJ0D_e0yDmE6699Pp3RFyTuGaUtA34looxqsDMqNCqLKqhDwkMwCqSl1RfUxOUnoDACYkm5HVMvRpiKMd_CcW9XYbw7ff1IPPduFCLHocY91lGb5CfE9FsyuSf90E32bXjb3do6fkyNVdwrM_nZOX1d3z8qFcP90_Lm_XpWVMDSWFhWOikU3TcK41tgwV1ZYvJHABllqQFhdcS-0sk4LVChpsG9vytkUnFZuTyyk3__kxYhrMxieLXVf3GMZkcllQQuoMXk2gjSGliM5sY-4Vd4aC-d3JCLPfKZMXE-kR8Z-abj9kuGPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25608569</pqid></control><display><type>article</type><title>Constructive approximations for neural networks by sigmoidal functions</title><source>IEEE Electronic Library (IEL)</source><creator>Jones, L.K.</creator><creatorcontrib>Jones, L.K.</creatorcontrib><description>A constructive algorithm for uniformly approximating real continuous mappings by linear combinations of bounded sigmoidal functions is given. G. Cybenko (1989) has demonstrated the existence of uniform approximations to any continuous f provided that sigma is continuous; the proof is nonconstructive, relying on the Hahn-Branch theorem and the dual characterization of C(I/sup n/). Cybenko's result is extended to include any bounded sigmoidal (even nonmeasurable ones). The approximating functions are explicitly constructed. The number of terms in the linear combination is minimal for first-order terms.&lt; &gt;</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/5.58342</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Frequency ; Mathematics ; Neural networks ; Neurons ; Pursuit algorithms ; Visualization</subject><ispartof>Proceedings of the IEEE, 1990-10, Vol.78 (10), p.1586-1589</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-107f35b6bbb4499ed3e819c4760450c1c06ce74969fc3653a80bedbcd4ddef683</citedby><cites>FETCH-LOGICAL-c338t-107f35b6bbb4499ed3e819c4760450c1c06ce74969fc3653a80bedbcd4ddef683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/58342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/58342$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jones, L.K.</creatorcontrib><title>Constructive approximations for neural networks by sigmoidal functions</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>A constructive algorithm for uniformly approximating real continuous mappings by linear combinations of bounded sigmoidal functions is given. G. Cybenko (1989) has demonstrated the existence of uniform approximations to any continuous f provided that sigma is continuous; the proof is nonconstructive, relying on the Hahn-Branch theorem and the dual characterization of C(I/sup n/). Cybenko's result is extended to include any bounded sigmoidal (even nonmeasurable ones). The approximating functions are explicitly constructed. The number of terms in the linear combination is minimal for first-order terms.&lt; &gt;</description><subject>Frequency</subject><subject>Mathematics</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pursuit algorithms</subject><subject>Visualization</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAUxC0EEqUgZrZMMAWe44_aI6ooIFVigdlKnGdkSONiJ0D_e0yDmE6699Pp3RFyTuGaUtA34looxqsDMqNCqLKqhDwkMwCqSl1RfUxOUnoDACYkm5HVMvRpiKMd_CcW9XYbw7ff1IPPduFCLHocY91lGb5CfE9FsyuSf90E32bXjb3do6fkyNVdwrM_nZOX1d3z8qFcP90_Lm_XpWVMDSWFhWOikU3TcK41tgwV1ZYvJHABllqQFhdcS-0sk4LVChpsG9vytkUnFZuTyyk3__kxYhrMxieLXVf3GMZkcllQQuoMXk2gjSGliM5sY-4Vd4aC-d3JCLPfKZMXE-kR8Z-abj9kuGPU</recordid><startdate>19901001</startdate><enddate>19901001</enddate><creator>Jones, L.K.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19901001</creationdate><title>Constructive approximations for neural networks by sigmoidal functions</title><author>Jones, L.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-107f35b6bbb4499ed3e819c4760450c1c06ce74969fc3653a80bedbcd4ddef683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Frequency</topic><topic>Mathematics</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pursuit algorithms</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, L.K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jones, L.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructive approximations for neural networks by sigmoidal functions</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>1990-10-01</date><risdate>1990</risdate><volume>78</volume><issue>10</issue><spage>1586</spage><epage>1589</epage><pages>1586-1589</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>A constructive algorithm for uniformly approximating real continuous mappings by linear combinations of bounded sigmoidal functions is given. G. Cybenko (1989) has demonstrated the existence of uniform approximations to any continuous f provided that sigma is continuous; the proof is nonconstructive, relying on the Hahn-Branch theorem and the dual characterization of C(I/sup n/). Cybenko's result is extended to include any bounded sigmoidal (even nonmeasurable ones). The approximating functions are explicitly constructed. The number of terms in the linear combination is minimal for first-order terms.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/5.58342</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 1990-10, Vol.78 (10), p.1586-1589
issn 0018-9219
1558-2256
language eng
recordid cdi_ieee_primary_58342
source IEEE Electronic Library (IEL)
subjects Frequency
Mathematics
Neural networks
Neurons
Pursuit algorithms
Visualization
title Constructive approximations for neural networks by sigmoidal functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructive%20approximations%20for%20neural%20networks%20by%20sigmoidal%20functions&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Jones,%20L.K.&rft.date=1990-10-01&rft.volume=78&rft.issue=10&rft.spage=1586&rft.epage=1589&rft.pages=1586-1589&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/5.58342&rft_dat=%3Cproquest_RIE%3E25608569%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25608569&rft_id=info:pmid/&rft_ieee_id=58342&rfr_iscdi=true