Constructive approximations for neural networks by sigmoidal functions

A constructive algorithm for uniformly approximating real continuous mappings by linear combinations of bounded sigmoidal functions is given. G. Cybenko (1989) has demonstrated the existence of uniform approximations to any continuous f provided that sigma is continuous; the proof is nonconstructive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 1990-10, Vol.78 (10), p.1586-1589
1. Verfasser: Jones, L.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A constructive algorithm for uniformly approximating real continuous mappings by linear combinations of bounded sigmoidal functions is given. G. Cybenko (1989) has demonstrated the existence of uniform approximations to any continuous f provided that sigma is continuous; the proof is nonconstructive, relying on the Hahn-Branch theorem and the dual characterization of C(I/sup n/). Cybenko's result is extended to include any bounded sigmoidal (even nonmeasurable ones). The approximating functions are explicitly constructed. The number of terms in the linear combination is minimal for first-order terms.< >
ISSN:0018-9219
1558-2256
DOI:10.1109/5.58342