Leakage power profiling and leakage power reduction using DFT hardware
In a CMOS logic circuit, the leakage power dissipated depends on the state of the design. In this paper we propose a novel technique to use the Q-gating logic that are added to reduce power during shift to also reduce leakage power during functional standby mode of the circuit. First, we propose lea...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a CMOS logic circuit, the leakage power dissipated depends on the state of the design. In this paper we propose a novel technique to use the Q-gating logic that are added to reduce power during shift to also reduce leakage power during functional standby mode of the circuit. First, we propose leakage-aware test (λ-test) vector generation that can be used to profile leakage power consumed by the circuit. This is used to identify blocks that drains excessive standby leakage power. We also propose a new partial Q-gating technique that uses the λ-test to determine the subset of flops that should be gated-off to achieve maximum simultaneous reduction in shift mode dynamic power and standby mode leakage power. A fast, test relaxation and test cube merging algorithm is used for this purpose. Experiments conducted on ISCAS and ITC benchmarks show up to 43.6% reduction in leakage power. For the partial gated design, we obtained up to 15.3% leakage power reduction and up to 6.1× reduction in shift power. |
---|---|
ISSN: | 1093-0167 2375-1053 |
DOI: | 10.1109/VTS.2011.5783753 |