A new, highly efficient, and easy to implement top-down join enumeration algorithm
Finding an optimal execution order of join operations is a crucial task in every cost-based query optimizer. Since there are many possible join trees for a given query, the overhead of the join (tree) enumeration algorithm per valid join tree should be minimal. In the case of a clique-shaped query g...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finding an optimal execution order of join operations is a crucial task in every cost-based query optimizer. Since there are many possible join trees for a given query, the overhead of the join (tree) enumeration algorithm per valid join tree should be minimal. In the case of a clique-shaped query graph, the best known top-down algorithm has a complexity of Θ(n 2 ) per join tree, where n is the number of relations. In this paper, we present an algorithm that has an according O(1) complexity in this case. We show experimentally that this more theoretical result has indeed a high impact on the performance in other non-clique settings. This is especially true for cyclic query graphs. Further, we evaluate the performance of our new algorithm and compare it with the best top-down and bottom-up algorithms described in the literature. |
---|---|
ISSN: | 1063-6382 2375-026X |
DOI: | 10.1109/ICDE.2011.5767901 |