Distributed cube materialization on holistic measures

Cube computation over massive datasets is critical for many important analyses done in the real world. Unlike commonly studied algebraic measures such as SUM that are amenable to parallel computation, efficient cube computation of holistic measures such as TOP-K is non-trivial and often impossible w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nandi, A, Cong Yu, Bohannon, P, Ramakrishnan, R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cube computation over massive datasets is critical for many important analyses done in the real world. Unlike commonly studied algebraic measures such as SUM that are amenable to parallel computation, efficient cube computation of holistic measures such as TOP-K is non-trivial and often impossible with current methods. In this paper we detail real-world challenges in cube materialization tasks on Web-scale datasets. Specifically, we identify an important subset of holistic measures and introduce MR-Cube, a MapReduce based framework for efficient cube computation on these measures. We provide extensive experimental analyses over both real and synthetic data. We demonstrate that, unlike existing techniques which cannot scale to the 100 million tuple mark for our datasets, MR-Cube successfully and efficiently computes cubes with holistic measures over billion-tuple datasets.
ISSN:1063-6382
2375-026X
DOI:10.1109/ICDE.2011.5767884