Symmetry reduced and exact non-traveling wave solutions of the (2+1)-D GSWW equation

In this paper, the (2+1)-dimensional generalized shallow water wave equation (GSWW) is reduced to a (1+1)-dimensional PDE with constant coefficients by means of the group method. Moreover, we determine some new exact non-traveling solutions with arbitrary function of the GSWW equation by means of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guangcan Xiao, Chuang Zheng, Daquan Xian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the (2+1)-dimensional generalized shallow water wave equation (GSWW) is reduced to a (1+1)-dimensional PDE with constant coefficients by means of the group method. Moreover, we determine some new exact non-traveling solutions with arbitrary function of the GSWW equation by means of the homoclinic test technique, Hirota method and auxiliary equation method, etc.
ISSN:2164-4357
DOI:10.1109/ICIST.2011.5765138