Face recognition using Eigenfaces

Face is a complex multidimensional visual model and developing a computational model for face recognition is difficult. The paper presents a methodology for face recognition based on information theory approach of coding and decoding the face image. Proposed methodology is connection of two stages -...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kshirsagar, V P, Baviskar, M R, Gaikwad, M E
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Face is a complex multidimensional visual model and developing a computational model for face recognition is difficult. The paper presents a methodology for face recognition based on information theory approach of coding and decoding the face image. Proposed methodology is connection of two stages - Feature extraction using Principle Component Analysis and recognition using the feed forward back propagation Neural Network. The goal is to implement the system (model) for a particular face and distinguish it from a large number of stored faces with some real-time variations as well. The Eigenface approach uses Principal Component Analysis (PCA) algorithm for the recognition of the images. It gives us efficient way to find the lower dimensional space.
DOI:10.1109/ICCRD.2011.5764137